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Turbulent Premixed Flames

Rod-stabilized V-flame 4-jet Low-swirl burner (LSB)

Stagnation flame Type 1A supernova
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Premixed flames
Basic methane combustion

CH4 + 2O2 → CO2 + 2H2O + heat

Multiple intermediate species, many
reactions

Initial reactions form radicals (chain
initiating)

Additional reactions multiply radical pool
(chain branching)

Radicals combine to form stable products
(chain terminating)

Requires heat to initiate reactions

How does this work in a premixed flame?

Released heat sustains reactions
Heat and radicals formed "inside" the

flame diffuse into fuel to initiate
reactions

Balance of diffusion and reaction
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Effect of Turbulence
How does a premixed flame re-
spond to turbulence?

Turbulent Intensity
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Turbulence accelerates
flame
Higher turbulent intensity
leads to higher propagation
speed
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Flame propagating toward a source
of turbulence is inherently unstable

st < ū → lower u′ → lower st

st > ū → higher u′ → higher st
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Turbulent Premixed Flames
Experimental flame stabilization mechanisms

Rod-stabilized V-flame 4-jet Low-swirl burner (LSB) Stagnation flame

We would like to study these types of flames computationally

Basic flame dynamics

Turbulence / chemistry interaction

Inherent flame instability introduces complication

How does stabilization effect the flame
How should we stabilize the flame numerically
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One possible approach

Simulate laboratory scale flame

Low Mach number formulation
Detailed chemistry and transport

Projection-based formulation

Adaptive mesh refinement

Dynamic load balancing

Issues:
Simulation of stabilization
Role of stabilization
Characterization of boundary conditions

Expensive

How do we effectively study premixed
flames computationally

How can we stabilize the flame
computationally

How can we understand the results
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Simplified configuration

Most previous computational studies have
used a simplified configuration

Rutland and Trouve (1993)

Trouve and Poinsot (1994)

Zhang and Rutland (1995)

Cant et al. (2002)

Chakraborty and Cant (2004)

Tanahasi et al. (2000,2002)

Bell et al. (2002)

Unfortunately, this flame is unstable

Develop a computational approach to stabi-
lize this flame and create a statistically sta-
tionary flame in this simplified geometry.
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Turbulent flame sheet simulations
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Automatic control

Dynamically adjust mean inflow velocity to stabilize flame

Assumptions

Flame location defined as total mass of fuel in the domain
There is an unknown turbulent flame speed s(x) representing
average speed of propagation that must be estimated

Turbulent flame speed is not constant in time, it fluctuates around s

Stochastic ODE model

dx = (vin(t) − s(x))dt + dω

Given an initial location of the flame x(0) = α and a target location β, find a
strategy for adjusting vin(t) so that x(t) → β and estimate s

To model instability let s(x) = s̄(1 − γ(x − β))

Want vin(t) to be smooth in time and positive
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Control strategy

Introduce time scale τ that defines target time to reach control.

Want τ sufficiently large that
∫ t+τ
t dω ≈ 0

Given vin(t0) and sest solve

β = x(t0) +

∫ t0+τ

t0

vin(t0) + (t− t0)∆v − sest dt = τ(vin(t0)− sest) + τ2∆v/2

for slope ∆v to define linear profile for vin(t) that controls the solution to
the desired target

Adjust ∆v so that maximum change in vin is limited and vin > 0

Use actual response of system to update sest

sest = (1 − ε)sest + εsloc
obs
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Control algorithm test

Test condition
x(0) = .5, β = 1.

s = .3 − .1(x − 1.)

Noise ≈ 30%

Max change 5%

Comments
Target interval to balance

smoothness requirement

Control insensitive to estimated
speed

Speed estimator noisy

For real flame calculations we
observe

Smooth temporal variation

Noisiness in estimation
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Flame Test Configuration

2D premixed CH4 /air flame

Low Mach code w/detailed chemistry and
transport

GRI Mech 3.0
53 species
325 reactions

Inflow: u = v̄in + w
v̄in − mean inflow velocity
w − “isotropic 2D turbulent fluctuations”

Products

Fuel y
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Demonstration Cases

Parameters:
φ = (0.55, 0.75, 1.00)

`t ∼ 2.6δT , u′ ∼ 1.6sL

L ∼ 46δT ∼ 17`t

∆x = L/1024 ∼ δT /22
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Representative Snapshots
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Turbulent flame speeds

Time / eddy turnover period
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Global Analysis: sL vs. AT

sT : Fuel consumption rate
Normalized by CH4 mass fueling rate

sL: Laminar flame speed

AT : Length of T = TQmax contour

T = TQmax(φ) is the
temperature of peak heat
release in flat flame.

L: Width of domain Area Enhancement
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Global consumption linear with flame area

Flame area shows considerable variation
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Consumption Rate Variability
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Local estimates of sT
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Local consumption vs. curvature
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Is this linear? Looks as if slope changes at κ = 0

Sections torn off do not have same Markstein variation
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Flame diagnostics
How can we look in more detail at what is going on in these flames to
explain observed behavior

Analysis of continuum data for multi-dimensional simulations is difficult,
particularly for isolating chemical behavior

Multiple processes
– Advection
– Diffusion
– Reactions

Cause and effect are difficult to separate

We want an easy way to pose and answer questions about the simulation

Experimental perspective: If you want to assess the chemical behavior of a
system, tag specific atoms and monitor how they move through the system

For example, if we want to understand carbon chemistry in a methane
flame, watch what happens to carbon atoms in the fuel.

Carbon atom is transported by species (initially methane)

Reactions transfer carbon from one species to another
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Lagrangian formulation
We want to determine the fate of an atom A, initially in molecule, Mk

Track trajectory of Mk

If Mk reacts then A can move to another species Mk′

Eulerian form of species conservation:

∂ρYk

∂t
+ ∇uρYk = ∇ρDk∇Yk + ρωk

Lagrangian form of the species equation:

ρ
DYk

Dt
=

∂Yk

∂t
+ u · ∇Yk = ∇ · ρDk∇Yk + ωk
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Stochastic formulation
Lagrangian form

ρ
DYk

Dt
=

∂Yk

∂t
+ u · ∇Yk = ∇ · ρDk∇Yk + ωk

Interpret species equations from the perspective of an atom A in molecule
Mk

dxA = u(xA, t)dt + dWk(t)(xA, t) + dRk:k′(xA, t)

Wk is a generalized Weiner measure (random walk) that represents
effect of species diffusion

dRk:k′(xA, t) represents "scattering" of A in Mk into a set of other
molecules Mk′ as a result of reaction

Ensemble of solutions gives behavior of tagged atoms

Model system using an operator split formulation

Advection and diffusion
Reactions
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Advection / diffusion
Lattice approximation to random walk (1D)

ρY n+1
k = ρY n

k +
∆t

∆x2

[

(ρD)nk+1/2
(Y n

k+1 − Y n
k ) + (ρD)nk−1/2

(Y n
k−1 − Y n

k )
]

Given mass ρYk at xj , t
n,

∆t

∆x2
(ρD)nk−1/2

Y n
k shifts left and

∆t

∆x2
(ρD)nk+1/2

Y n
k shifts right

Stochastic advection / diffusion:

x
∗

A = x
n
A + ∆t u

x
n+1
A =















x
∗

A + ∆x if 0 ≤ α ≤ pR,

x
∗

A − ∆x if pR < α ≤ pR + pL,

x
∗

A if pR + pL < α ≤ 1.

For random number α ∈ [0, 1]
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Stochastic model of reactions
Elementary reactions

R1 : OH + CH4 ⇒ CH3 + H2O

R2 : HCO + CH4 ⇒ CH3 + CH2O

d[CH4]

dt
= −k1[OH][CH4] − k2[HCO][CH4]

Approximate differential equation using forward Euler

[CH4]
n+1 = [CH4]

n
− ∆t k1[OH]n[CH4]

n
− ∆t k2[HCO]n[CH4]

n
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Markov model

[CH4]
n+1 = [CH4]

n
− ∆t k1[OH]n[CH4]

n
− ∆t k2[HCO]n[CH4]

n

Interpret as probabilities

∆t k1[OH] is probability of CH4 → CH3 by R1

∆t k2[HCO] is probability of CH4 → CH3 by R2

1 − ∆t k1[OH] − ∆t k2[HCO] is probability CH4 does not react

M1

M2

r1 r2 r3

M3

r4

M4

r5 r6

Model chemistry over ∆t as a Markov process M∆t subject to some
subtleties
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Formulation issues

Near equilibrium reactions
A∈M0

M1

M3 M4

M2

Want p(A) ≈ p(B) ≈ 0.5

Treat forward and reverse reactions separately
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More formulation issues

Reaction ambiguity

CN + NO2 NCO + NO

-O

-O, +C

Rxn 281:

Molecules with multiple atoms

O + CH4 OH + CH3Rxn 11:

Probability = p

CH4

CH3

OH0.75 p

0.25 p

CH CO M CH CO M2 + + ↔ +( ) ( )2

R1

CH CO H CH CO2 3+ ↔ +

R2

CH CO
2

CH 
2

CH 
3

CO CO

R1

R1

R2

R2
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Steady premixed flame
Sample trajectories from steady premixed methane flame φ = 1.2
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Premixed flame chemistry
Rich (φ = 1.2) premixed methane flame computed using PREMIX with
GRIMech 3.0
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Spatial structure

Particle trajectories can also recover
the spatial structure of the solution

Laminar diffusion flame, specialized
sampling to create trajectories

Ensemble average of the residence
time of NO is proportional to the mo-
lar concentration (moles/area) of NO
in the continuum solution

Cont 32K 128K 1,000K
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Vortex flame interaction

Premixed CH4-air fuel, N2 -diluted
φ = 0.8, 1.2

GRIMech 3.0
53 species
325 reactions

Domain: 1.2 × 4.8 cm
∆xeff = 47µm
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VFI chemistry

Rich (φ = 1.2)

Lean (φ = 0.8)

t = 0 ms t = 5.3 ms t = 11 ms

t = 0 ms t = 5.3 ms t = 11 ms

CH

Rich (φ = 1.2)

Lean (φ = 0.8)

t = 0 ms t = 5.3 ms t = 11 ms

t = 0 ms t = 5.3 ms t = 11 ms

CH3O

Stochastic algorithms – p. 31/39



Stochastic particle analysis

Seed particles and L and R

Collect an ensemble of trajectories

Look at statistical behavior to analyze
behavior
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Reaction Path Diagrams - φ = 1.2
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Reaction Path Diagram - φ = 0.8
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CH behavior
Why does interaction with vortex shift the chemical pathways

CH3 chemistry

Left – red
Right – blue

Yellow – no radicals
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Shifting reaction pathways and reduced CH result from reduced radical
pool
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Radical behavior
Classical flame theory suggests more mobile molecules, H and H2, have
the strongest effect on radical pool

Perform stochastic particle analysis for H-atoms

H doesn’t live long enough to be transported far

H2 life-expectancy more than doubles in strained region

H2 transported out of the flame zone

H
2
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CH3O behavior
CH3O bloom is not a result of shifting pathways

Behavior of CH3O is more subtle

Particle trajectories show two reactions destroy most of the CH3O

Rxn 57 : CH3O(+M) → CH2O + H(+M)

Rxn 170 : CH3O + O2 → CH2O + HO2

Molecules destroyed by Rxn 170 live on average more the a factor of
two longer in the strained portion of the flame.

Temperature profile is steeper where vortex interacts with flame

CH3O diffusing ahead of the flame sees colder conditions

Rxn 170 is strongly temperature dependent (T 7.6)

CH3O bloom is not a result of increased creation but increased longevity
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Summary and future work

Stochastic algorithms in flame simulation

Control of flames
Stochastic control algorithm
Smooth control for CFD coupling
Control based on time interval to

reach target

Stochastic particle diagnostics
Track "atoms" through the flow
Stochastic model for reactions

and diffusion
Use ensemble of trajectories to

investigate numerical solutions
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